Artificial intelligence (AI), the ability of a digital computer or computer-controlled robot to perform tasks commonly associated with intelligent beings. The term is frequently applied to the project of developing systems endowed with the intellectual processes characteristic of humans, such as the ability to reason, discover meaning, generalize, or learn from past experience
There are a number of different forms of learning as applied to artificial intelligence. The simplest is learning by trial and error. For example, a simple computer program for solving mate-in-one chess problems might try moves at random until mate is found. The program might then store the solution with the position so that, the next time the computer encountered the same position, it would recall the solution.
Problem solving, particularly in artificial intelligence, may be characterized as a systematic search through a range of possible actions in order to reach some predefined goal or solution. Problem-solving methods divide into special purpose and general purpose. A special-purpose method is tailor-made for a particular problem and often exploits very specific features of the situation in which the problem is embedded. In contrast, a general-purpose method is applicable to a wide variety of problems. One general-purpose technique used in AI is means-end analysis—a step-by-step, or incremental, reduction of the difference between the current state and the final goal. The program selects actions from a list of means—in the case of a simple robot, this might consist of PICKUP, PUTDOWN, MOVEFORWARD, MOVEBACK, MOVELEFT, and MOVERIGHT—until the goal is reached.
A language is a system of signs having meaning by convention. In this sense, language need not be confined to the spoken word. Traffic signs, for example, form a mini-language, it being a matter of convention that ⚠ means “hazard ahead” in some countries. It is distinctive of languages that linguistic units possess meaning by convention, and linguistic meaning is very different from what is called natural meaning, exemplified in statements such as “Those clouds mean rain” and “The fall in pressure means the valve is malfunctioning.”
To reason is to draw inferences appropriate to the situation. Inferences are classified as either deductive or inductive. An example of the former is, “Fred must be in either the museum or the café. He is not in the café; therefore, he is in the museum,” and of the latter is, “Previous accidents of this sort were caused by instrument failure. This accident is of the same sort; therefore, it was likely caused by instrument failure.” The most significant difference between these forms of reasoning is that in the deductive case, the truth of the premises guarantees the truth of the conclusion, whereas in the inductive case, the truth of the premises lends support to the conclusion without giving absolute assurance.
In perception the environment is scanned by means of various sensory organs, real or artificial, and the scene is decomposed into separate objects in various spatial relationships. Analysis is complicated by the fact that an object may appear different depending on the angle from which it is viewed, the direction and intensity of illumination in the scene, and how much the object contrasts with the surrounding field. At present, artificial perception is sufficiently advanced to enable optical sensors to identify individuals and enable autonomous vehicles to drive at moderate speeds on the open road.
This is are some of our speakers
Innovate Nairobi is fully owned by Nairobi City County and is set to showcase innovations taking place; within county sectors, county incubation centres and the annual Innovate Nairobi Tech week. The platform aims to create greater visibility and build community for all makers and creators who give life to the terms Silicon Savannah.